Enrollment No: ____

_____Exam Seat No: _____

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Differential Equations

Subject Code: 5SC0	1DIE1	Branch: M.Sc. (Mathematics)	
Semester: 1	Date: 21/03/2018	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the following questions	(07)
	a.	Write Rodrigue's formula.	(01)
	b.	Evaluate: $\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{5}{2}\right)$.	(01)
	c.	Evaluate: $\int_{-1}^{1} P_{3}^{2}(x) dx$.	(01)
	d.	Write Legendre's equation.	(01)
	e.	Two solutions $y_1(x)$ and $y_2(x)$ are said to be linearly independent if $W(y_1, y_2) = 0$. Determine whether the statement is true or false.	(01)
	f.	Bessel's equation of order 4 is $x^2y'' + xy' + (x^2 - 4)y = 0$. Determine whether the statement is true or false.	(01)
	g.	$\frac{d}{dx}[x^2J_2(x)] = x^2J_1(x)$. Determine whether the statement is true or false.	(01)
Q-2		Attempt all questions	(14)
	a.	Discuss the singularities of the equation $(x + 1)^2 y'' + (x + 1)y' - y = 0$ at	(05)
	_	$x = 0$ and $x = \infty$.	(a =)
	b.	Expand $f(x)$ in series of Legendre polynomials, if	(05)
		$f(x) = \begin{cases} 2x+1, & 0 < x \le 1\\ 0, & -1 \le x < 0 \end{cases}$	
	c.	Find a power series solution of the form $\sum_{n=0}^{\infty} a_n x^n$ for the differential equation	(04)
		y'-y=0.	
		OR	
Q-2		Attempt all questions	(14)
	a.	Prove that: $i J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x, ii J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x.$	(05)
	b.	Apply method of variation of parameters to solve $y'' - 2y' = e^x \sin x$.	(05)
	c.	Determine the singular points of differential equation $2x (x-2)^2 y'' + 3x y' +$	(04)
		(x-2)y = 0 and classify them as regular or irregular.	

Q-3		Attempt all questions	(14)
	a.	Using Frobenious method to solve the differential equation	(07)
		$(2x + x^3)y'' - y' - 6xy = 0$ about $x = 0$.	
	b.	Verify directly that representation $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$ satisfies Bessel's	(04)
		equation in which $n = 0$.	
	c.	Show that $nP_n = (2n-1)xP_{n-1} - (n-1)P_{n-2}, n \ge 2$. OR	(03)
Q-3		Attempt all questions	(14)
	a.	Show that $(1 - 2xz + z^2)^{-\frac{1}{2}} = \sum_{m=0}^{\infty} z^m P_m(x), x < 1, z < 1.$	(07)
	b.	Define: Ordinary and Regular singular point. Determine whether $x = 0$ is an ordinary point or a regular singular point of the differential equation $2x^2y'' + 7x(x+1)y' - 3y = 0$	(04)
	c.	Show that $J_P(ax)$ is solution of $y'' + \frac{1}{2}y' + (a^2 - \frac{p^2}{2})y = 0$.	(03)
		$\mathbf{SECTION} - \mathbf{II}$	
O-4		Attempt the following questions	(07)
C	a.	Write Gauss's hyper geometric equation.	(01)
	b.	Solve: $(6x + yz) dx + (xz - 2y) dy + (xy + 2z) dz = 0.$	(01)
	c.	Solve: $z = px + qy + \sqrt{1 + p^2 + q^2}$.	(01)
	d.	Write Lagrange's equation.	(01)
	e.	The equation $(2x + 3y)p + 4xq - 8pq = x + y$ is nonlinear. Determine whether the statement is true or false.	(01)
	f.	Hypergeometric function is not symmetric. Determine whether the statement is true or false.	(01)
	g.	A Pfaffian differential equation in two variable is always integrable. Determine whether the statement is true or false.	(01)
Q-5		Attempt all questions	(14)
	a.	Using Picard's method of successive approximations, find the two approximation	(05)
		of the solution of equation: $\frac{dy}{dx} = e^x + y^2$, where $y = 1$ when $x = 0$.	
	b.	Find the general integral of $yzp + xzq = xy$.	(05)
	c.	Show that the equations $xp - yq = x$ and $x^2p + q = xz$ are compatible.	(04)
o -		OR	
Q-5	0	Attempt all questions Solver $u = x^2 - u^2 = 0$ by using leashi's method	(14)
	a. h	Solve: $u_x x^2 - u_y^2 - u u_z^2 = 0$ by using Jacobi s method.	(05)
	D.	Let $u(x, y)$ and $v(x, y)$ be two functions of x and y such that $\frac{\partial v}{\partial y} \neq 0$. If,	(05)
		further $\frac{\partial(u,v)}{\partial(x,y)} = 0$, then prove that there exists a relation $F(u,v) = 0$, between u	
		and v not involving x and y explicitly.	
	c.	Eliminate the arbitrary function and hence obtain the partial differential equation i) $z = x + y + F(xy)$	(04)
		ii) $z = F(x - z, y - z)$.	

Q-6		Attempt all questions	
a.		Find complete integral of $z^2 = pqxy$ by using Charpit's method.	
1	b.	Prove that if X is a vector such that $X \cdot curl X = 0$ and μ is an arbitrary function	(04)
		of x, y, z, then $\mu x \cdot curt \mu x = 0$.	
	c.	Form partial differential equation by eliminating a and b from $z = (x^2 + a)(x^2 + b)$	(03)
		z = (x + u)(y + b).	
		OK OK	
Q-6		Attempt all questions	(14)
	a.	Verify that the Pfaffian differential equation	(07)

$$(y^{2} + yz) dx + (xz + z^{2})dy + (y^{2} - xy) dz = 0$$

b. Prove that
$$\frac{d}{dx} F(\alpha, \beta; \gamma; x) = \frac{\alpha\beta}{\gamma} F(\alpha + 1, \beta + 1; \gamma + 1; x).$$
 (04)

c. Form partial differential equation by eliminating arbitrary constants a and b from (03)

$$z = ax + a^2y^2 + b$$
.

